以色列科学家利用Plantarray植物逆境研究系统在CELLS发表文章


欧亚国际

欢迎您来到欧亚国际科技官方网站!

土壤仪器电话

010-82794912

品质至上,客户至上,您的满意就是我们的目标

当前位置:  首页 > 新闻动态

以色列科学家利用Plantarray植物逆境研究系统在CELLS发表文章

发表时间: 点击:1036

来源:北京欧亚国际科技有限公司

分享:

来自以色列的科学家,利用Plantarray植物逆境研究系统在知名期刊CELLS发表了题为Tomato Yellow Leaf Curl Virus (TYLCV) Promotes Plant Tolerance to Drought的文章。

摘要 

越来越多的研究表明病毒和植物之间存在着积极的相互作用。番茄黄化曲叶病毒(TYLCV)能够保护番茄寄主植物免受极端干旱的侵害。要想在农业中使用病毒防护能力,必须在种植前首先将TYLCV抗性番茄品系感染。这种抗病毒番茄植株含有的病毒量不会引起疾病症状、生长抑制或产量损失,但足以改变植株的代谢,从而提高耐旱性。这一现象是基于干旱诱导的(可溶性糖、氨基酸和蛋白质)TYLCV依赖性关键渗透保护剂稳定数量。尽管在感染TYLCV的敏感番茄中,胁迫标记也显示出增强的稳定性,但在感染TYLCV的抗性植株中,水分平衡和渗透压平衡达到特别高的水平。这些西红柿植物在蓄水期间能存活很长时间。然而,在恢复到正常灌溉后,它们生产的果实不会受到干旱的影响,与对照植物类似。利用这些特性,在缺水季节培育抗TYLCV植物是可能的。

关键词:双生病毒;干旱;植物病毒相互作用;渗透保护性代谢物

Tomato Yellow Leaf Curl Virus (TYLCV) Promotes Plant Tolerance to Drought

byMoshik Shteinberg1,Ritesh Mishra1,Ghandi Anfoka2,Miassar Altaleb2,Yariv Brotman3,Menachem Moshelion1,Rena Gorovits1 and Henryk Czosnek1

Cells2021, 10(11), 2875; http://doi.org/10.3390/cells10112875 (registering DOI)

Abstract

A growing body of research points to a positive interplay between viruses and plants. Tomato yellow curl virus (TYLCV) is able to protect tomato host plants against extreme drought. To envisage the use of virus protective capacity in agriculture, TYLCV-resistant tomato lines have to be infected first with the virus before planting. Such virus-resistant tomato plants contain virus amounts that do not cause disease symptoms, growth inhibition, or yield loss, but are sufficient to modify the metabolism of the plant, resulting in improved tolerance to drought. This phenomenon is based on the TYLCV-dependent stabilization of amounts of key osmoprotectants induced by drought (soluble sugars, amino acids, and proteins). Although in infected TYLCV-susceptible tomatoes, stress markers also show an enhanced stability, in infected TYLCV-resistant plants, water balance and osmolyte homeostasis reach particularly high levels. These tomato plants survive long periods of time during water withholding. However, after recovery to normal irrigation, they produce fruits which are not exposed to drought, similarly to the control plants. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.

image.png

Figure 3.Water balance in S-967 and R-GF967 plants exposed to drought stress depends on virus infection. Using the Plantarray system, physiological parameters were measured over 14 days for uninfected normally irrigated R-GF967 (R0W) and drought-exposed (R0D) tomatoes; the same conditions were analyzed for TYLCV-infected R-GF967 plants (RVW vs. RVD). S-967 tomatoes were coined as S0W-S0D and SVW-SVD. (A) Efficiency of daily transpiration expressed as delta of plant mass (g) in morning and evening. Mean ± SE continuous daily whole plant transpiration during the entire experimental period. (B) Normalized transpiration (E). Mean ± SE midday transpiration rate normalized to weight (E) during the entire experimental period between 11 am and 1 pm. (C) Physiological drought point (Θcrit) and water use efficiency (WUE). Θcrit was identified as midday transpiration rate vs. the soil water content (SWCcrit) of tomatoes grown in water withholding conditions. WUE is identified as the ratio between the gain of daily weight and the daily transpiration. Mean ± SE of WUE calculated automatically by SPAC analytics software; values with same letter are not significant (p = 0.05, Student’s t-test). (D) Calculated plant weight (CPW) determined as the sum of the initial plant weight (calculated before growth in SPAC-Analytics) with the cumulative transpiration multiplied by WUE. Mean ± SE of CPW for the entire experimental period. Values with deferent letters are significant (p < 0.05, Student’s t-test was carried out separately for normally irrigated and drought on 14 dd).

image.png

iCORE功能表型组学设施简介

安装机构(iCORE) 功能表型组学设施–安装Plantarray 功能表型组学平台

安装地点 希伯来大学农学院

安装分类 可控环境下功能表型组学平台

环境操作:生物根环境,养分浓度,水含量,气温,化学环境,湿度

状态 可操作

性状测量 农艺、生长、根特性、水状态、水利用效率、木质部和韧皮部运输

参考 Halperin et. Al., The advantages of functional phenotyping in pre-field screening for drought-tolerant crops (2016) The Plant Journal 10.1111/tpj.13425 Negin et. al., The advantages of functional phenotyping in pre-field screening for drought-tolerant crops (2016) Functional Plant Biology DOI: 10.1071/FP16156 Sade et. al., Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion?(2009) New Phytologist. 181: 651–661

说明

该一流设施主要用于功能表型组学研究,是iCORE的一部分,中心按照了一流、先进的高通量自动平台,来自以色列 Plant-DiTech公司的高通量自动平台,该系通为基于测重的诊断平台,配套有高级分析工具,设计用于功能和非生物胁迫研究。该系统实施监控多个生理性状,也可对每株植株进行土壤水、肥料和盐度条件精确调控。系统可提供植物性能实时反馈、深度统计分析,并以清晰图标方式展示,能帮助研究人员有效选择在胁迫条件下性能突出的植株,鉴定潜在新植物机制。

该设施可提供一系列如下应用:

• 土壤水和盐精确持续测量以及反馈控制

• 对非生物胁迫的反馈研究

• 耐胁迫育种(在不利条件下提升产量)

• 农业化学品以及生物刺激剂研究Agro-chemicals and bio-stimulants

• 根活力

• 生态生理学(植物表型) (G × E基因环境互作)

The facility is currently operational with 330 measuring units (each unit serves as a station for one pot). 该系统目前运行着330个测量单元(每个测量单元是一个花盆的工作站。到2017年,系统已经可以容纳500个测量单元。 该系统适合任何植物种类 (从小植物到田间作物、树木)。换盆尺寸大小从 1.5 -60 L,多种类型土壤可用,配有多种高品质土壤传感器。实时的土壤-植物-环境测量可帮助研究人员在无损环境中监控分析植物性能。每个实验设置随机在模块设置中进行,置于不同环境中的植物互相连接,植物生长在相同环境条件中。在全植株水平可对下来生理性状进行监控:日常生物增益、日常水损失、水利用效率、蒸腾速率、气孔导度、根水流、相对水含量以及单独胁迫指数 (DRI)。

研究设施位于以色列中心,易于模拟中等到客户环境条件。该功能表型中心由以色列公共基金建造,用于植物对多种干旱胁迫的以及延续的气候变化的反馈模型进行全方位了解 。该设施易于操作,对科学家和私人公司开放使用。

  • 土壤仪器品牌德国steps
  • 土壤仪器品牌奥地利PESSL
  • 土壤仪器品牌荷兰MACView
  • 土壤仪器品牌德国INNO_Concept
  • 土壤仪器品牌比利时WIWAM
  • 土壤仪器品牌德国GEFOMA
  • 土壤仪器品牌奥地利schaller
  • 土壤仪器品牌荷兰PhenoVation
  • 土壤仪器品牌法国Hi-phen系统
  • 土壤仪器品牌Videometer
  • 土壤仪器品牌比利时INDUCT(OCTINION)
  • 土壤仪器品牌美国EGC
  • 土壤仪器品牌HAIP
  • 土壤仪器品牌植物遗传资源学报
欧亚国际