Pessl植物生理生态系统:早疫病预报系统对检测西班牙西北部马铃薯作物首发症状的适用性
  • 欧亚国际

    欢迎您来到欧亚国际科技官方网站!

    土壤仪器电话

    010-82794912

    品质至上,客户至上,您的满意就是我们的目标

    技术文章

    当前位置:  首页 > 技术文章

    Pessl植物生理生态系统:早疫病预报系统对检测西班牙西北部马铃薯作物首发症状的适用性

    发表时间:2022-08-18 16:18:07点击:873

    来源:北京欧亚国际科技有限公司

    分享:

    Pessl植物生理生态监测系统的全套监测系统和在线平台FieldClimate适用于所有气候区,可用于各种行业和各种用途——从农业到研究、水文、气象、洪水警报等。iMetos植物生理生态监测系统已经成为一个全球品牌,使用持续时间更长,性能更好,是通用的天气监测设备,具有早期识别和警报功能(有SMS手机提醒功能);可以用来计划、控制和管理复杂的独立气象过程。该监测系统专为不同气候区域的多种任务而设计。其可以安装多达600个传感器,如土壤和空气湿度、温度、降雨、风速、风向、叶片 湿度、总体辐射等传感器。

    Pessl植物生理生态监测系统的数据采集工作站可以将这些数据无线传输到安全的互联网数据库上。该数据库是优秀的数据存储和处理平台。用户获得登录密码后,可以从世界任何地方的互联网终端登录并获得这些数据、报告和图表。测量的信息来源于传感器所在的位置。使用者可以从网站上一个区域可输入或修改阈值和电话号码。操作无需专门软件。

    Pessl植物生理生态监测系统仅需要有效的GPRS协议用于数据传输,在站点所在处也需要网络的充分覆盖。该系统是一组多功能、模块化配置的系统,运行完全免维护。该工作站采用太阳能充电电池。工作站可以连接多种传感器。即插即用模式便于工作站扩展传感器数目。

    1660635390547078.png

    近年来,早疫病的流行频繁导致马铃薯作物严重减产。当天气条件有利时,这种真菌病会迅速发展,迫使农民使用杀菌剂。利米亚是西班牙最大的马铃薯生产区之一。通常,早期疫病流行是使用预先制定的日程表来控制的。这种策略成本高昂,并且会影响农业区的环境。目前还没有农民使用决策支持系统来管理早疫病。因此,本研究的目的是根据植物或/和病原体要求和天气条件评估不同的早疫病预测模型,以检查它们对预测早疫病最初症状的适用性,这是确定第一种杀菌剂的时间所必需的应用。为此,在五个作物季节监测天气、物候和疾病症状。在植物出苗后 37 至 40 天,在开花期开始出现第一个早疫病症状。基于植物的预测模型提供了最好的结果。具体而言,具有 1.4 个风险单位和成长度天数(361 个累积单位)的 Wang-Engel 模型提供了最佳预测。基于病原体的模型显示出保守的预测,而结合植物和病原体特征的模型预测第一次早疫病袭击明显较晚。

     image.png

    五个作物季节的天气参数和物候变化

    Suitability of Early Blight Forecasting Systems for Detecting First Symptoms in Potato Crops of NW Spain

    Abstract: In recent years, early blight epidemics have been frequently causing important yield loses

    in potato crop. This fungal disease develops quickly when weather conditions are favorable, forcing

    the use of fungicides by farmers. A Limia is one of the largest areas for potato production in Spain.

    Usually, early blight epidemics are controlled using pre-established schedule calendars. This strategy is expensive and can affect the environment of agricultural areas. Decision support systems are not currently in place to be used by farmers for managing early blight. Thus, the objective of this research was to evalsuate different early blight forecasting models based on plant or/and pathogen requirements and weather conditions to check their suitability for predicting the first symptoms of early blight, which is necessary to determine the timings of the first fungicide application. For this, weather, phenology and symptomatology of disease were monitored throughout five crop seasons. The first early blight symptoms appeared starting the flowering stage, between 37 and 40 days after emergence of plants. The forecasting models that were based on plants offered the best results. Specifically, the Wang-Engel model, with 1.4 risk units and Growing Degree-Days (361 cumulative units) offeredthe best prediction. The pathogen-based models showed a conservative forecast, whereas the models that integrated both plant and pathogen features forecasted the first early blight attack markedly later.

    相关阅读

    iMETOS植物生理生态监测系统

    CropVIEW植物物候监测系统

    Pessl植物生理生态监测系统:雪和寒冷是如何影响小麦生产

    Pessl植物生理生态系统:不同生长习性大豆品种产量与基因型x环境互作

    Pessl植物生理生态系统:同化光照下番茄茎直径模型的改进

    • 土壤仪器品牌德国steps
    • 土壤仪器品牌奥地利PESSL
    • 土壤仪器品牌荷兰MACView
    • 土壤仪器品牌德国INNO_Concept
    • 土壤仪器品牌比利时WIWAM
    • 土壤仪器品牌德国GEFOMA
    • 土壤仪器品牌奥地利schaller
    • 土壤仪器品牌荷兰PhenoVation
    • 土壤仪器品牌法国Hi-phen系统
    • 土壤仪器品牌Videometer
    • 土壤仪器品牌比利时INDUCT(OCTINION)
    • 土壤仪器品牌美国EGC
    • 土壤仪器品牌HAIP
    • 土壤仪器品牌植物遗传资源学报
    欧亚国际