品质至上,客户至上,您的满意就是我们的目标
技术文章
当前位置: 首页 > 技术文章
轻松同步植物功能表型测量-Plantarray植物功能生理表型测量系统
发表时间:2022-10-11 13:35:03点击:796
技术给人们的生活带来了许多积极的变化,过去漫长、技术性强、复杂的过程因技术变得更简单、更准确。这一过程也体现在农业研发过程中,如植物功能表型研究测量和分析。
在过去几十年里,育种家和科学家主要使用手工方法来测量和分析特定的植物生长和生产力因素,例如植物对水分胁迫、温度、CO2水平等的反应。测量以手工进行的,或者通过低通量系统进行,如气孔计、叶绿素荧光仪等,目前仍被世界各地的研究人员广泛用于温室和现场测量。此类系统一次只对一片特定的叶子进行一次测量,产生了不错的结果,但忽略了可能影响整个过程或整个植物的动态环境条件。因逐个进行测量,此类过程过去耗时、耗力。更重要的是,测量并未比较分析植物对相同现实环境的反应。除此之外,测量最终只提供了部分解释,结果可能狭隘、不全面,此类方法可能成本更高。
为了提供一个更好、更准确的解决方案,更深入了解植物在高级研究中的动态行为,PlantDiTech开发了PlantArray平台,这是一个独特的、全自动化的创新技术系统,可用来研究,实时对整个工厂性能的各个方面进行连续和同步试验
与以前常规低通量系统不同,PlantArray专门测量绝对蒸腾量、生物量、水分利用效率和气孔导度,并以极高的空间和时间分辨率(每天大约500个同步读数),结合虚拟专用数据库和环境传感,准确地评估植物的生产力和生长速率,效率远远高于人工测量且对被测植物的损害或影响为零。此外,PlantArray系统还为每个植物创建个性化的土壤水分条件。结合基于云的软件SPAC(土壤-植物-大气-连续体)分析(也是由PlantDiTech开发的),这些软件执行实时分析和统计,以提供关于植物生产力的最快、最准确的数据,从而加快研究并管理无限可能性,以探索植物的生长预测。
换言之,Plantarray将表型分析提升到了一个全新的水平,并保证了实现一个整体的功能生理过程,其特点是精密的测量技术、绝对可靠的结果、40多篇科学论文的支持以及用户友好的界面。该革新式系统地改变了研究植物的方式,并且研究耗时更少、省钱、省力。
部分文章列表
http://www.plant-ditech.com/references/academic-articles
Scientific Articles
The following selected scientific papers used PlantDiTech technology:
High-Resolution Analysis of Growth and Transpiration of Quinoa Under Saline Conditions
Jaramillo Roman V. et. al., (2021), Front. Plant Sci. DOI: 10.3389/fpls.2021.634311
Low Si combined with drought causes reduced transpiration in sorghum Lsi1 mutant
Markovich, O et. al., (2022), Plant Soil DOI: 10.1007/s11104-022-05298-4
Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants
Mishra R. et. al., (2022), Molecular Plant Pathology DOI: 10.1111/mpp.13172
Diurnal stomatal apertures and density ratioses affect whole-canopy stomatal conductance, water-use efficiency and yield
Gosa et. al., (2022), bioRxiv DOI: 10.1101/2022.01.06.475121
The potential of dynamic physiological traits in young tomato plants to predict field-yield performance
Gosa et. al., (2022), Plant Science DOI: 10.1016/j.plantsci.2021.111122
Continuous seasonal monitoring of nitrogen and water content in lettuce using a dual phenomics system
Shahar Weksler et. al., (2021), Jornal of Experimental Botany DOI: 10.1093/jxb/erab561
Functional physiological phenotyping with functional mapping: A general framework to bridge the phenotype-genotype gap in plant physiology
Pandey et. al., (2021), iScience DOI: 10.1016/j.isci.2021.102846
Editorial: State-of-the-Art Technology and Applications in Crop PhenomicsEditorial: State-of-the-Art Technology and Applications in Crop Phenomics
Ji Zhou. (2021), Front. Plant Sci. DOI: 10.3389/fpls.2021.767324
On the Interpretation of Four Point Impedance Spectroscopy of Plant Dehydration Monitoring
Yosi Shacham-Diamand. (2021), IEEE. DOI: 10.1109/JETCAS.2021.3098984
Modify Root/Shoot ratio Alleviate Root Water Influxes in Wheat under Drought Stress
Bacher et. al., (2021), Journal of Experimental Botany DOI: 10.1093/jxb/erab500
Inhibition of gibberellin accumulation by water deficiency promotes fast and long-term ‘drought avoidance’ responses in tomato
Shohat et. al., (2021), New Phytologist. DOI: 10.1111/nph.17709
Unraveling the Genetic Architecture of Two Complex, Stomata-Related Drought-Responsive Traits by High-Throughput Physiological Phenotyping and GWAS in Cowpea
Xinyi Wu et. al., (2021), Front. Genet. DOI: 10.3389/fgene.2021.743758
Tomato Yellow Leaf Curl Virus (TYLCV) Promotes Plant Tolerance to Drought
Shteinberg et. al., (2021), Cells DOI: 10.3390/cells10112875
High-Throughput physiology-based stress response phenotyping: Advantages, applications and prospective in horticultural plants
Yanwei Li et. al., (2021), Horticultural Plant Journal DOI: 10.1016/j.hpj.2020.09.004
Pepper Plants Leaf Spectral Reflectance Changes as a Result of Root Rot Damage
S. Weksler et. al. (2021), Remote Sens. DOI: 10.3390/rs13050980
Detection of Potassium Deficiency and Momentary Transpiration Rate Estimation at Early Growth Stages Using Proximal Hyperspectral Imaging and Extreme Gradient Boosting
S. Weksler et. al. (2021), Sensors DOI: 10.3390/s21030958
The dichotomy of yield and drought resistance; Translation challenges from basic research to crop adaptation to climate change
Menachem Moshelion (2020), EMBO Rep DOI: 10.15252/embr.202051598
A Telemetric, Gravimetric Platform for Real-Time Physiological Phenotyping of Plant–Environment Interactions
Dalal et. al. (2020), JoVE DOI: 10.3791/61280
A Hyperspectral-Physiological Phenomics System: Measuring Diurnal Transpiration Rates and Diurnal Reflectance
S. Weksler et. al. (2020), Remote Sens. DOI:10.3390/rs12091493
Mutations in the Tomato Gibberellin Receptors Suppress Xylem Proliferation and Reduce Water Loss Under Water-Deficit Conditions
S. Weksler et. al. (2020), Journal of Experimental Botany. DOI:10.3390/rs12091493
Multiple Gibberellin Receptors Contribute to Phenotypic Stability under Changing Environments
Risk-management strategies and transpiration rates of wild barley in uncertain environments
The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure
Transcriptome analysis of Pinus halepensis under drought stress and during recovery
Fox et. Al., (2017) Tree Physiology DOI:10.1093/treephys/tpx137
A combination of stomata deregulation and a distinctive modulation of amino acid metabolism are associated with enhanced tolerance of wheat varieties to transient drought
Aidoo et. al., (2017) Metabolomics DOI:10.1007s11306-017-1267-y
High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions
Halperin et. Al., (2016) The Plant Journal 10.1111/tpj.13425
Cytokinin activity increases stomatal density and transpiration rate in tomato
Farber et. Al., (2016) Journal of Experimental Botany DOI: 10.1093/jxb/erw398
The advantages of functional phenotyping in pre-field screening for drought-tolerant crops
Negin et. al., (2016) Functional Plant Biology DOI: 10.1071/FP16156
Current challenges and future perspectives of plant and agricultural biotechnology
Moshelion and Altman, (2015) Trends in Biotechnology. 33, 337–342
Growth and physiological responses of isohydric and anisohydric poplars to drought
Ziv Attia et al., (2015) Journal of Experimental Botany doi10.1093jxberv195
Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration
Lugassi et. al., (2015) Frontiers in plant sciences DOI:10.3389/fpls.2015.01114.
Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour
Tracy Lawson et. al., (2014) New Phytologist DOI: 10.1111nph.12945
Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts
Bedada et. al., (2014) BMC Genomics DOI: 10.11861471-2164-15-995
Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.
Moshelion et. al., (2014) Plant Cell & Environment DOI: 10.1111/pce.12410
Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth
Kelly et. al., (2014) PLoS One. 9 : DOI:10.1371/ journal.pone.0087888
The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato.
Nir et. al., (2013) Plant cell and Environment 37, 113–123
Hexokinase mediates stomatal closure
Kelly et. al., (2013) The Plant Journal 75, 977–988 DOI: 10.1111/tpj.12258
Risk-taking plants: Anisohydric behavior as a stress-resistance trait
Sade et. Al., (2012) Plant Signaling & Behavior DOI org/10.4161/psb.20505
Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress
Wallach et. al., (2010) Journal of Experimental Botany 61:3439–3449
The Role of Tobacco Aquaporin1 in Improving Water Use Efficiency, Hydraulic Conductivity, and Yield Production Under Salt Stress
Sade et. al., (2010) Plant Physiology 152:1-10
Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion?
Sade et. al., (2009) New Phytologist. 181: 651–661