Plantarray植物功能生理表型研究平台:水分亏缺引发水分胁迫下花生植株生理学的跨代影响

欧亚国际

欢迎您来到欧亚国际科技官方网站!

土壤仪器电话

010-82794912

品质至上,客户至上,您的满意就是我们的目标

技术文章

当前位置:  首页 > 技术文章

Plantarray植物功能生理表型研究平台:水分亏缺引发水分胁迫下花生植株生理学的跨代影响

发表时间:2024-08-30 12:47:21点击:116

来源:北京欧亚国际科技有限公司

分享:

Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。

image.png 

水分亏缺引发水分胁迫下花生植株生理学的跨代影响

摘要

通过调节亏缺灌溉来引发水分亏缺已被证明对花生种植有益,从而提高作物周期中的水分利用效率并增强胁迫适应。利用缺水引发的影响可能是可遗传的,但对于胁迫引发对经历水分胁迫的连续一代的生理和生长的影响知之甚少。进行了两项实验,通过确定两种基因型 COC-041 和新墨西哥瓦伦西亚 C (NMV-C) 的引发和非引发花生植物的后代的生理和生长反应来评估跨代引发,这两种基因型先前都发现对引发有强烈反应。通过调节亏缺灌溉 (primed) 或充分灌溉 (nonprimed) 从遭受轻度水分胁迫的亲本植物中收集种子。然后种植这些种子,并监测后代对水分胁迫的生理和生长反应,包括使用在整株植物基础上的高通量生理表型平台以及定期单叶测量。测量包括全株蒸腾 (plant-Tr)、根系水分吸收、叶片蒸腾、气孔导度和净 CO2 同化 (leaf-Tr、leaf-gs 和 leaf-A)、叶片水分和渗透电位 (leaf-Ψw 和 leaf-Ψo)、叶片渗透调节、叶片相对含水量 (leaf-RWC) 和累积植株-Tr。与来自非引发亲本植物的后代相比,来自引发的亲本植物的两种基因型的后代早期建立更快,发芽更均匀,初始幼苗生长更迅速。尽管两种基因型的非引发和引发植物的后代在暴露于水分胁迫时表现出植物-Tr、气体交换、叶片-Ψw、叶片-Ψo 和叶片-RWC 的显著减少,但引发植物的后代通过减少叶片-gs、叶片-Tr 和植物-Tr 表现出更高的水分利用效率,同时在水分胁迫下保持叶片-A。尽管引发和非引发植物的后代都容易受到严重的水分胁迫,但引发植物的后代表现出整体增强的水分利用效率,每克蒸腾水的干生物量产生更多,并且与非引发植物的后代相比,由于水分胁迫而导致生长减速,特别是对于基因型 COC-041尤其如此。这项研究表明,在水分供应有限的情况下,水分亏缺引发有可能通过增强下一代植物的作物逆境适应来促进生理功能的跨代变化。 

Cross-Generational Effect of Water Deficit Priming on Physiology of Peanut Plants Under Water Stress

ABSTRACT

Water deficit priming through regulated deficit irrigation has been shown to be beneficial for peanut cultivation, leading to improved water-use efficiency during the crop cycle and enhanced stress acclimation. The effects of priming using water deficit can be heritable, but little is known about stress priming effects on the physiology and growth of successive generations undergoing water stress. Two experiments were conducted to assess cross-generational priming by determining physiological and growth responses of offspring of primed and non-primed peanut plants of two genotypes, COC-041 and New Mexico Valencia C (NMV-C), both previously found to be strongly responsive to priming. Seeds were collected from parental plants subjected to mild water stress by regulated deficit irrigation (primed) or adequate irrigation (non-primed). These seeds were then planted, and the offspring were monitored for physiological and growth responses to water stress, including on a whole-plant basis using a high-throughput physiological phenotyping platform and on individual leaves by periodic single-leaf measurements. Measurements included whole-plant transpiration (plant-Tr), root water uptake, leaf transpiration, stomatal conductance and net CO2 assimilation (leaf-Tr, leaf-gs, and leaf-A), leaf water and osmotic potential (leaf-Ψw and leaf-Ψo), leaf osmotic adjustment, leaf relative water content (leaf-RWC) and cumulative plant-Tr. Offspring of both genotypes from primed parent plants had faster early establishment, with more uniform germination, and more rapid initial seedling growth compared to offspring from non-primed parent plants. Although offspring of both non-primed and primed plants of both genotypes exhibited a significant reduction of plant-Tr, gas exchange, leaf-Ψw, leaf-Ψo, and leaf-RWC when exposed to water stress, offspring of primed plants showed increased water use efficiency through reduced leaf-gs, leaf-Tr and plant-Tr while maintaining leaf-A under water stress. Despite offspring of both primed and non-primed plants being susceptible to severe water stress, offspring of primed plants exhibited overall enhanced water use efficiency, leading to greater dry biomass production per gram of transpired water and a trend of less growth reduction due to water stress compared to offspring of non-primed plants, especially for the genotype COC-041. This study shows the potential of water deficit priming to promote cross-generational changes in physiological function under limited water availability, by enhancing crop stress acclimation in the next plant generation.

  • 土壤仪器品牌德国steps
  • 土壤仪器品牌奥地利PESSL
  • 土壤仪器品牌荷兰MACView
  • 土壤仪器品牌德国INNO_Concept
  • 土壤仪器品牌比利时WIWAM
  • 土壤仪器品牌德国GEFOMA
  • 土壤仪器品牌奥地利schaller
  • 土壤仪器品牌荷兰PhenoVation
  • 土壤仪器品牌法国Hi-phen系统
  • 土壤仪器品牌Videometer
  • 土壤仪器品牌比利时INDUCT(OCTINION)
  • 土壤仪器品牌美国EGC
  • 土壤仪器品牌HAIP
  • 土壤仪器品牌植物遗传资源学报
欧亚国际