利用VideometerLab多光谱成像工具结合化学计量法快速鉴别高品质西瓜种子

欧亚国际

欢迎您来到欧亚国际科技官方网站!

土壤仪器电话

010-82794912

品质至上,客户至上,您的满意就是我们的目标

技术文章

当前位置:  首页 > 技术文章

利用VideometerLab多光谱成像工具结合化学计量法快速鉴别高品质西瓜种子

发表时间:2020-04-28 08:49:54点击:1090

来源:北京欧亚国际科技有限公司

分享:

该研究聚焦于探讨利用多光谱成像系统结合化学计量法无损鉴别高品质西瓜种子的可行性。

研究使用了主成分分析法(PCA),较小二乘支持向量机(LS-SVM),BP神经网络(BPNN),以及随机森林法(RF)来测定种子品质。

结果显示,光谱学和形态学特征在区分西瓜种子品质时非常重要。高品质西瓜种子与其它西瓜种子的显著区别,如死种子和低活力种子进行视觉化,区分度较好(Julong品种精度92%(LS-SVM)和Xiali品种91%(RF模型)。结果显示多光谱成像可用于快速、有效无损监测西瓜种子品质。

关键词

西瓜子,多光谱成像,无损

北京欧亚国际科技有限公司是丹麦Videometer公司中国区总代理,全面负责其系列产品在中国市场的推广、销售和售后服务。

Rapid Discrimination of High-Quality Watermelon Seeds by Multispectral Imaging Combined with Chemometric Methods

This study focuses on the feasibility of nondestructive discrimination of high-quality watermelon seeds with a multispectral imaging system combined with chemometrics. Principal component analysis (PCA), least squares-support vector machines (LS-SVM), back propagation neural network (BPNN), and random forest (RF) were applied to determine the seed quality. 

The results demonstrate that both the spectral and the morphological features are essential for discrimination of the quality of watermelon seeds. Clear differences between high-quality watermelon seeds and other watermelon seeds including dead seeds and low-vigor seeds were visualized, and an excellent classification (with accuracies of 92% in the LS-SVM model for Julong and 91% in the RF model for Xiali, respectively) was achieved. These results indicate that multispectral imaging could be used for rapid and efficient nondestructive quality control of watermelon seeds.

Keywords

watermelon seeds multispectral imaging nondestructive 


  • 土壤仪器品牌德国steps
  • 土壤仪器品牌奥地利PESSL
  • 土壤仪器品牌荷兰MACView
  • 土壤仪器品牌德国INNO_Concept
  • 土壤仪器品牌比利时WIWAM
  • 土壤仪器品牌德国GEFOMA
  • 土壤仪器品牌奥地利schaller
  • 土壤仪器品牌荷兰PhenoVation
  • 土壤仪器品牌法国Hi-phen系统
  • 土壤仪器品牌Videometer
  • 土壤仪器品牌比利时INDUCT(OCTINION)
  • 土壤仪器品牌美国EGC
  • 土壤仪器品牌HAIP
  • 土壤仪器品牌植物遗传资源学报
欧亚国际