利用VideometerLab 多光谱成像系统鉴别甜菜种子加工损伤-质量控制
  • 欧亚国际

    欢迎您来到欧亚国际科技官方网站!

    土壤仪器电话

    010-82794912

    品质至上,客户至上,您的满意就是我们的目标

    技术文章

    当前位置:  首页 > 技术文章

    利用VideometerLab 多光谱成像系统鉴别甜菜种子加工损伤-质量控制

    发表时间:2020-05-06 09:57:54点击:1274

    来源:北京欧亚国际科技有限公司

    分享:

    较近,来自Aarhus大学的Birte 教授研究团队发表了题为Classification of Processing Damage in Sugar Beet (Beta vulgaris) Seeds by Multispectral  Image Analysis 的文章,对多光谱成像技术在种子质量控制的应用进行了深入研究。VideometerLab 多光谱成像系统是的光谱、计算机等技术集成设备,体现了近视距多光谱研究的较高水准,广泛为先进机构如ISTA等等广泛使用。

    图片9.png

    图片10.png

    Classification of Processing Damage in Sugar Beet (Beta vulgaris) Seeds by Multispectral  Image Analysis

    Zahra Salimi and Birte Boelt *

    Department of Agroecology, Aarhus University, 4200 Slagelse, Denmark; z.salimi@agro.au.dk

    *  Correspondence: bb@agro.au.dk

    Received: 17 April 2019; Accepted: 16 May 2019; Published: 22 May 2019

    Abstract: The pericarp of monogerm sugar beet seed  is rubbed off during  processing  in  order to produce uniformly  sized seeds ready  for  pelleting.  This process  can lead to mechanical  damage, which  may cause  quality  deterioration of  the  processed seeds. Identification of  the mechanical damage and classification of the severity of the injury is important and currently time consuming, as visual inspections by trained analysts are used. This study aimed to find alternative seed quality assessment methods by evalsuating a machine vision technique for the classification of five damage types in  monogerm sugar  beet seeds. Multispectral  imaging (MSI)  was employed using the VideometerLab3 instrument and  instrument software. Statistical analysis of  MSI-derived data produced a model, which had an average of 82% accuracy in classification of 200 seeds in the five damage classes. The first class contained seeds with the potential to produce good seedlings and the model was designed to put more limitations on seeds to be classified in this group. The classification accuracy of  class one  to five was  59,  100,  77,  77 and 89%, respectively. Based  on  the results we conclude that MSI-based classification of mechanical damage in sugar beet seeds is a potential tool for future seed quality assessment.

    Keywords: machine vision; mechanical damage; prediction model; seed quality; seed polishing 


    • 土壤仪器品牌德国steps
    • 土壤仪器品牌奥地利PESSL
    • 土壤仪器品牌荷兰MACView
    • 土壤仪器品牌德国INNO_Concept
    • 土壤仪器品牌比利时WIWAM
    • 土壤仪器品牌德国GEFOMA
    • 土壤仪器品牌奥地利schaller
    • 土壤仪器品牌荷兰PhenoVation
    • 土壤仪器品牌法国Hi-phen系统
    • 土壤仪器品牌Videometer
    • 土壤仪器品牌比利时INDUCT(OCTINION)
    • 土壤仪器品牌美国EGC
    • 土壤仪器品牌HAIP
    • 土壤仪器品牌植物遗传资源学报
    欧亚国际